Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 626(7999): 555-564, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38356065

RESUMO

The possibility that the Amazon forest system could soon reach a tipping point, inducing large-scale collapse, has raised global concern1-3. For 65 million years, Amazonian forests remained relatively resilient to climatic variability. Now, the region is increasingly exposed to unprecedented stress from warming temperatures, extreme droughts, deforestation and fires, even in central and remote parts of the system1. Long existing feedbacks between the forest and environmental conditions are being replaced by novel feedbacks that modify ecosystem resilience, increasing the risk of critical transition. Here we analyse existing evidence for five major drivers of water stress on Amazonian forests, as well as potential critical thresholds of those drivers that, if crossed, could trigger local, regional or even biome-wide forest collapse. By combining spatial information on various disturbances, we estimate that by 2050, 10% to 47% of Amazonian forests will be exposed to compounding disturbances that may trigger unexpected ecosystem transitions and potentially exacerbate regional climate change. Using examples of disturbed forests across the Amazon, we identify the three most plausible ecosystem trajectories, involving different feedbacks and environmental conditions. We discuss how the inherent complexity of the Amazon adds uncertainty about future dynamics, but also reveals opportunities for action. Keeping the Amazon forest resilient in the Anthropocene will depend on a combination of local efforts to end deforestation and degradation and to expand restoration, with global efforts to stop greenhouse gas emissions.


Assuntos
Florestas , Aquecimento Global , Árvores , Secas/estatística & dados numéricos , Retroalimentação , Aquecimento Global/prevenção & controle , Aquecimento Global/estatística & dados numéricos , Árvores/crescimento & desenvolvimento , Incêndios Florestais/estatística & dados numéricos , Incerteza , Recuperação e Remediação Ambiental/tendências
2.
Science ; 383(6679): 219-225, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38207046

RESUMO

Biodiversity is declining globally, yet many biodiversity hotspots still lack comprehensive species conservation assessments. Using multiple International Union for Conservation of Nature (IUCN) Red List criteria to evaluate extinction risks and millions of herbarium and forest inventory records, we present automated conservation assessments for all tree species of the Atlantic Forest biodiversity hotspot, including ~1100 heretofore unassessed species. About 65% of all species and 82% of endemic species are classified as threatened. We rediscovered five species classified as Extinct on the IUCN Red List and identified 13 endemics as possibly extinct. Uncertainties in species information had little influence on the assessments, but using fewer Red List criteria severely underestimated threat levels. We suggest that the conservation status of tropical forests worldwide is worse than previously reported.


Assuntos
Espécies em Perigo de Extinção , Extinção Biológica , Florestas , Árvores , Animais , Biodiversidade
3.
Nature ; 625(7996): 728-734, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38200314

RESUMO

Trees structure the Earth's most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1-6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth's 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world's most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees.


Assuntos
Florestas , Árvores , Clima Tropical , Biodiversidade , Árvores/anatomia & histologia , Árvores/classificação , Árvores/crescimento & desenvolvimento , África , Sudeste Asiático
4.
Commun Biol ; 6(1): 1130, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938615

RESUMO

Using 2.046 botanically-inventoried tree plots across the largest tropical forest on Earth, we mapped tree species-diversity and tree species-richness at 0.1-degree resolution, and investigated drivers for diversity and richness. Using only location, stratified by forest type, as predictor, our spatial model, to the best of our knowledge, provides the most accurate map of tree diversity in Amazonia to date, explaining approximately 70% of the tree diversity and species-richness. Large soil-forest combinations determine a significant percentage of the variation in tree species-richness and tree alpha-diversity in Amazonian forest-plots. We suggest that the size and fragmentation of these systems drive their large-scale diversity patterns and hence local diversity. A model not using location but cumulative water deficit, tree density, and temperature seasonality explains 47% of the tree species-richness in the terra-firme forest in Amazonia. Over large areas across Amazonia, residuals of this relationship are small and poorly spatially structured, suggesting that much of the residual variation may be local. The Guyana Shield area has consistently negative residuals, showing that this area has lower tree species-richness than expected by our models. We provide extensive plot meta-data, including tree density, tree alpha-diversity and tree species-richness results and gridded maps at 0.1-degree resolution.


Assuntos
RNA Longo não Codificante , Árvores , Florestas , Solo , Temperatura
5.
Science ; 382(6666): 103-109, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37797008

RESUMO

Indigenous societies are known to have occupied the Amazon basin for more than 12,000 years, but the scale of their influence on Amazonian forests remains uncertain. We report the discovery, using LIDAR (light detection and ranging) information from across the basin, of 24 previously undetected pre-Columbian earthworks beneath the forest canopy. Modeled distribution and abundance of large-scale archaeological sites across Amazonia suggest that between 10,272 and 23,648 sites remain to be discovered and that most will be found in the southwest. We also identified 53 domesticated tree species significantly associated with earthwork occurrence probability, likely suggesting past management practices. Closed-canopy forests across Amazonia are likely to contain thousands of undiscovered archaeological sites around which pre-Columbian societies actively modified forests, a discovery that opens opportunities for better understanding the magnitude of ancient human influence on Amazonia and its current state.


Assuntos
Arqueologia , Florestas , Humanos , Brasil
6.
Am J Bot ; 110(10): e16229, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37661805

RESUMO

PREMISE: The Amazonian hyperdominant genus Eperua (Fabaceae) currently holds 20 described species and has two strongly different inflorescence and flower types, with corresponding different pollination syndrome. The evolution of these vastly different inflorescence types within this genus was unknown and the main topic in this study. METHODS: We constructed a molecular phylogeny, based on the full nuclear ribosomal DNA and partial plastome, using Bayesian inference and maximum likelihood methods, to test whether the genus is monophyletic, whether all species are monophyletic and if the shift from bat to bee pollination (or vice versa) occurred once in this genus. RESULTS: All but two species are well supported by the nuclear ribosomal phylogeny. The plastome phylogeny, however, shows a strong geographic signal suggesting strong local hybridization or chloroplast capture, rendering chloroplast barcodes meaningless in this genus. CONCLUSIONS: With our data, we cannot fully resolve the backbone of the tree to clarify sister genera relationships and confirm monophyly of the genus Eperua. Within the genus, the shift from bat to bee and bee to bat pollination has occurred several times but, with the bee to bat not always leading to a pendant inflorescence.


Assuntos
Quirópteros , Fabaceae , Abelhas/genética , Animais , Filogenia , Inflorescência/genética , Teorema de Bayes , Análise de Sequência de DNA , Evolução Molecular
7.
Ecology ; 104(9): e4135, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37438994

RESUMO

We compiled and presented a dataset for all timber species reported in the Amazon region from all nine South American Amazonian countries. This was based on official information from every country, as well as from two substantial scientific references. We verified the standard taxonomic names from each individual source, using the Taxonomic Name Resolution Service (TNRS) and considered all Amazonian tree species with diameter at breast height (DBH) ≥10 cm. We also obtained estimates of the current population size for most species from a published approach based on data from 1900 tree inventory plots (1-ha each) distributed across the Amazon region and part from the Amazon Tree Diversity Network (ATDN). We then identified the hyperdominant timber species. In addition, we overlapped our timber species list with data for species that are used for commercial purposes, according to the International Tropical Timber Organization (ITTO), the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) and the International Union for Conservation of Nature (IUCN) taxa assessment and Red List categories. Finally, we also included IUCN Red List categories based on combined deforestation, and climate change scenarios for these species. Our final Amazonian timber species dataset contains 1112 unique species records, which belong to 337 genera and 72 families from the lowland Amazonian rainforest, with associated information related to population, conservation, and trade status of each species. The authors of this research expect that the information provided will be useful to strengthen the public forestry policies of the Amazon countries, inform ecological studies, as well for forest management purposes. The data are released under the Creative Commons Attribution 4.0 International license.


Assuntos
Comércio , Internacionalidade , Humanos , Árvores , Florestas , Agricultura Florestal , Conservação dos Recursos Naturais , Clima Tropical
8.
Curr Biol ; 33(16): 3495-3504.e4, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37473761

RESUMO

Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%-18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost.


Assuntos
Biodiversidade , Florestas , Humanos , Floresta Úmida , Brasil , Clima Tropical , Conservação dos Recursos Naturais , Ecossistema
9.
Ecology ; 104(1): e3872, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36121050

RESUMO

Hunting impacts tropical vertebrate populations, causing declines of species that function as seed dispersers and predators, or that browse seedlings and saplings. Whether and how the resulting reductions in seed dispersal, seed predation, and browsing translate to changes in the tree composition is poorly understood. Here, we assess the effect of defaunation on the functional composition of communities of tree recruits in tropical rainforests in French Guiana. We selected eight sites along a gradient of defaunation, caused by differences in hunting pressure, in otherwise intact old-growth forests in French Guiana. We measured shifts in functional composition by comparing leaf and fruit traits and wood density between tree recruits (up to 5 cm diameter at breast height) and adults, and tested whether and how these compositional shifts related to defaunation. We found a positive relationship with defaunation for shifts in specific leaf area, a negative relationship for shifts of leaf toughness and wood density, and a weak relationship for shifts in fruit traits. Our results suggest that the loss of vertebrates affects ecological processes such as seed dispersal and browsing, of which browsing remains understudied. Even though these changes sometimes seem minor, together they result in major shifts in forest composition. These changes have long-term ramifications that may alter forest dynamics for generations.


Assuntos
Florestas , Árvores , Animais , Guiana Francesa , Vertebrados , Folhas de Planta , Clima Tropical , Ecossistema
11.
Nat Ecol Evol ; 6(10): 1423-1437, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35941205

RESUMO

The latitudinal diversity gradient (LDG) is one of the most recognized global patterns of species richness exhibited across a wide range of taxa. Numerous hypotheses have been proposed in the past two centuries to explain LDG, but rigorous tests of the drivers of LDGs have been limited by a lack of high-quality global species richness data. Here we produce a high-resolution (0.025° × 0.025°) map of local tree species richness using a global forest inventory database with individual tree information and local biophysical characteristics from ~1.3 million sample plots. We then quantify drivers of local tree species richness patterns across latitudes. Generally, annual mean temperature was a dominant predictor of tree species richness, which is most consistent with the metabolic theory of biodiversity (MTB). However, MTB underestimated LDG in the tropics, where high species richness was also moderated by topographic, soil and anthropogenic factors operating at local scales. Given that local landscape variables operate synergistically with bioclimatic factors in shaping the global LDG pattern, we suggest that MTB be extended to account for co-limitation by subordinate drivers.


Assuntos
Biodiversidade , Florestas , Solo , Árvores
13.
Sci Rep ; 12(1): 5960, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35395860

RESUMO

Despite increasing attention for relationships between species richness and ecosystem services, for tropical forests such relationships are still under discussion. Contradicting relationships have been reported concerning carbon stock, while little is known about relationships concerning timber stock and the abundance of non-timber forest product producing plant species (NTFP abundance). Using 151 1-ha plots, we related tree and arborescent palm species richness to carbon stock, timber stock and NTFP abundance across the Guiana Shield, and using 283 1-ha plots, to carbon stock across all of Amazonia. We analysed how environmental heterogeneity influenced these relationships, assessing differences across and within multiple forest types, biogeographic regions and subregions. Species richness showed significant relationships with all three ecosystem services, but relationships differed between forest types and among biogeographical strata. We found that species richness was positively associated to carbon stock in all biogeographical strata. This association became obscured by variation across biogeographical regions at the scale of Amazonia, resembling a Simpson's paradox. By contrast, species richness was weakly or not significantly related to timber stock and NTFP abundance, suggesting that species richness is not a good predictor for these ecosystem services. Our findings illustrate the importance of environmental stratification in analysing biodiversity-ecosystem services relationships.


Assuntos
Ecossistema , Florestas , Biodiversidade , Carbono , Árvores
14.
Sci Rep ; 12(1): 2267, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35145191

RESUMO

Climate change is one of the main drivers of species extinction in the twentyfirst-century. Here, we  (1) quantify potential changes in species' bioclimatic area of habitat (BAH) of 135 native potential agroforestry species from the Brazilian flora, using two different climate change scenarios (SSP2-4.5 and SSP5-8.5) and dispersal scenarios, where species have no ability to disperse and reach new areas (non-dispersal) and where species can migrate within the estimated BAH (full dispersal) for 2041-2060 and 2061-2080. We then (2) assess the preliminary conservation status of each species based on IUCN criteria. Current and future potential habitats for species were predicted using MaxEnt, a machine-learning algorithm used to estimate species' probability distribution. Future climate is predicted to trigger a mean decline in BAH between 38.5-56.3% under the non-dispersal scenario and between 22.3-41.9% under the full dispersal scenario for 135 native potential agroforestry species. Additionally, we found that only 4.3% of the studied species could be threatened under the IUCN Red List criteria B1 and B2. However, when considering the predicted quantitative habitat loss due to climate change (A3c criterion) the percentages increased between 68.8-84.4% under the non-dispersal scenario and between 40.7-64.4% under the full dispersal scenario. To lessen such threats, we argue that encouraging the use of these species in rural and peri-urban agroecosystems are promising, complementary strategies for their long-term conservation.

15.
Biology (Basel) ; 10(11)2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34827113

RESUMO

Successional dynamics of plants and animals during tropical forest regeneration have been thoroughly studied, while fungal compositional dynamics during tropical forest succession remain unknown, despite the crucial roles of fungi in ecological processes. We combined tree data and soil fungal DNA metabarcoding data to compare richness and community composition along secondary forest succession in Costa Rica and assessed the potential roles of abiotic factors influencing them. We found a strong coupling of tree and soil fungal community structure in wet tropical primary and regenerating secondary forests. Forest age, edaphic variables, and regional differences in climatic conditions all had significant effects on tree and fungal richness and community composition in all functional groups. Furthermore, we observed larger site-to-site compositional differences and greater influence of edaphic and climatic factors in secondary than in primary forests. The results suggest greater environmental heterogeneity and greater stochasticity in community assembly in the early stages of secondary forest succession and a certain convergence on a set of taxa with a competitive advantage in the more persisting environmental conditions in old-growth forests. Our work provides unprecedented insights into the successional dynamics of fungal communities during secondary tropical forest succession.

16.
PLoS One ; 16(10): e0257875, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34597306

RESUMO

Plants have been used in Amazonian forests for millennia and some of these plants are disproportionally abundant (hyperdominant). At local scales, people generally use the most abundant plants, which may be abundant as the result of management of indigenous peoples and local communities. However, it is unknown whether plant use is also associated with abundance at larger scales. We used the population sizes of 4,454 arboreal species (trees and palms) estimated from 1946 forest plots and compiled information about uses from 29 Amazonian ethnobotany books and articles published between 1926 and 2013 to investigate the relationship between species usefulness and their population sizes, and how this relationship is influenced by the degree of domestication of arboreal species across Amazonia. We found that half of the arboreal species (2,253) are useful to humans, which represents 84% of the estimated individuals in Amazonian forests. Useful species have mean populations sizes six times larger than non-useful species, and their abundance is related with the probability of usefulness. Incipiently domesticated species are the most abundant. Population size was weakly related to specific uses, but strongly related with the multiplicity of uses. This study highlights the enormous usefulness of Amazonian arboreal species for local peoples. Our findings support the hypothesis that the most abundant plant species have a greater chance to be useful at both local and larger scales, and suggest that although people use the most abundant plants, indigenous people and local communities have contributed to plant abundance through long-term management.


Assuntos
Biodiversidade , Plantas , Brasil , Domesticação , Etnobotânica , Humanos
17.
Oecologia ; 196(4): 1119-1137, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34324078

RESUMO

Environmental and dispersal filters are key determinants of species distributions of Amazonian tree communities. However, a comprehensive analysis of the role of environmental and dispersal filters is needed to understand the ecological and evolutionary processes that drive phylogenetic and taxonomic turnover of Amazonian tree communities. We compare measures of taxonomic and phylogenetic beta diversity in 41 one-hectare plots to test the relative importance of climate, soils, geology, geomorphology, pure spatial variables and the spatial variation of environmental drivers of phylogenetic and taxonomic turnover in Ecuadorian Amazon tree communities. We found low phylogenetic and high taxonomic turnover with respect to environmental and dispersal filters. In addition, our results suggest that climate is a significantly better predictor of phylogenetic turnover and taxonomic turnover than geomorphology and soils at all spatial scales. The influence of climate as a predictor of phylogenetic turnover was stronger at broader spatial scales (50 km2) whereas geomorphology and soils appear to be better predictors of taxonomic turnover at mid (5 km2) and fine spatial scales (0.5 km2) but a weak predictor of phylogenetic turnover at broad spatial scales. We also found that the combined effect of geomorphology and soils was significantly higher for taxonomic turnover at all spatial scales but not for phylogenetic turnover at large spatial scales. Geographic distances as proxy of dispersal limitation was a better predictor of phylogenetic turnover at distances of 50 < 500 km. Our findings suggest that climatic variation at regional scales can better predict phylogenetic and taxonomic turnover than geomorphology and soils.


Assuntos
Biodiversidade , Filogenia
18.
Nat Ecol Evol ; 5(6): 757-767, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33795854

RESUMO

The forests of Amazonia are among the most biodiverse plant communities on Earth. Given the immediate threats posed by climate and land-use change, an improved understanding of how this extraordinary biodiversity is spatially organized is urgently required to develop effective conservation strategies. Most Amazonian tree species are extremely rare but a few are common across the region. Indeed, just 227 'hyperdominant' species account for >50% of all individuals >10 cm diameter at 1.3 m in height. Yet, the degree to which the phenomenon of hyperdominance is sensitive to tree size, the extent to which the composition of dominant species changes with size class and how evolutionary history constrains tree hyperdominance, all remain unknown. Here, we use a large floristic dataset to show that, while hyperdominance is a universal phenomenon across forest strata, different species dominate the forest understory, midstory and canopy. We further find that, although species belonging to a range of phylogenetically dispersed lineages have become hyperdominant in small size classes, hyperdominants in large size classes are restricted to a few lineages. Our results demonstrate that it is essential to consider all forest strata to understand regional patterns of dominance and composition in Amazonia. More generally, through the lens of 654 hyperdominant species, we outline a tractable pathway for understanding the functioning of half of Amazonian forests across vertical strata and geographical locations.


Assuntos
Florestas , Árvores , Biodiversidade , Brasil , Humanos
19.
Nat Commun ; 11(1): 6347, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33311511

RESUMO

Tropical forests are being deforested worldwide, and the remaining fragments are suffering from biomass and biodiversity erosion. Quantifying this erosion is challenging because ground data on tropical biodiversity and biomass are often sparse. Here, we use an unprecedented dataset of 1819 field surveys covering the entire Atlantic Forest biodiversity hotspot. We show that 83-85% of the surveys presented losses in forest biomass and tree species richness, functional traits, and conservation value. On average, forest fragments have 25-32% less biomass, 23-31% fewer species, and 33, 36, and 42% fewer individuals of late-successional, large-seeded, and endemic species, respectively. Biodiversity and biomass erosion are lower inside strictly protected conservation units, particularly in large ones. We estimate that biomass erosion across the Atlantic Forest remnants is equivalent to the loss of 55-70 thousand km2 of forests or US$2.3-2.6 billion in carbon credits. These figures have direct implications on mechanisms of climate change mitigation.


Assuntos
Biodiversidade , Biomassa , Ecologia , Florestas , Clima Tropical , Argentina , Brasil , Ciclo do Carbono , Mudança Climática , Conservação dos Recursos Naturais , Ecossistema , Paraguai , Especificidade da Espécie , Árvores
20.
Sci Rep ; 10(1): 10130, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32576943

RESUMO

Amazonian forests are extraordinarily diverse, but the estimated species richness is very much debated. Here, we apply an ensemble of parametric estimators and a novel technique that includes conspecific spatial aggregation to an extended database of forest plots with up-to-date taxonomy. We show that the species abundance distribution of Amazonia is best approximated by a logseries with aggregated individuals, where aggregation increases with rarity. By averaging several methods to estimate total richness, we confirm that over 15,000 tree species are expected to occur in Amazonia. We also show that using ten times the number of plots would result in an increase to just ~50% of those 15,000 estimated species. To get a more complete sample of all tree species, rigorous field campaigns may be needed but the number of trees in Amazonia will remain an estimate for years to come.


Assuntos
Biodiversidade , Classificação/métodos , Florestas , Rios , Árvores/classificação , Brasil
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...